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The shortening of the meta l -halogen bond has been 
previously observed in the  results of electron-diffraction 
studies of meta l  halide molecules in the vapor state. I t  
has  been pointed out by  several observers (Schomaker & 
Stevenson, 1941 ; Burawoy, 1943; Warhurs t ,  1949) tha t  
a decrease in bond distance is to be expected as the bond 
acquires more ionic character. Another  explanat ion 
(Pauling, 1940, p. 228) a t t r ibutes  the shortening to 
partis,1 double-bond character of the bond. Ei ther  
explanat ion is applicable to A1Cla. 

Table 4. Interatomic distances (in ~ngstr6m units) 

Distances in the A1CI~- tetrahedron 
Clx -C1H 3.48 A1-CI~ 2.16 
Cl~ -Clni 3"51 A1-CI~ 2.11 
CI~ -Cl~v 3.54 A1-C1 m 2.13 
C1 n -C1 m 3.49 A1-CI~v 2.12 
CI~ -Cl~v 3.46 
Clnr-Cliv 3"39 

Other distances 
Na-C11 3.08 Clr-CIII 3 .85 Clir-C11 3.85 

C11 3.20 CIII 3.86 C11 3.86 
C1 n 2.88 CIII 4.03 C11 4-03 
C1 n 3.72 C1 m 3.77 CIII I 3"74 
C1HI 2.79 Clii I 3.95 Clix I 3.91 
CIin 3.29 Cliv 3.69 Cliv 3.74 
Cliv 2.96 Cliv 3.81 Cliv 3-79 
Cliv 3"06 Cliv 3.92 Cliv 4"06 

Clm-C11 3.74 CIIv-C11 3.69 
C11 3.77 C11 3.81 
CI~ 3.95 ClI 3.92 
C1H 3.91 C1 n 3.74 
C1 m 3-74 C1H 3.79 
C1 m 3.74 CI~ 4.06 
Cl~v 3.78 Clxi ~ 3.78 

The sodium ions are located in the  emp ty  spaces 
between the  tetrahedra.  All the  sodium-chlorine dis- 
tances are larger t h a n  the sum of ionic radii,  2.76 A. 
The sodium atom has seven chlorine neighbors from 
2.79 to 3.29 A. dis tant  with one chlorine a tom much 
far ther  away at  3.72 A. In tera tomic  distances are listed 
in Table 4. 

The author  wishes to t hank  Dr H. P. Klug for sug- 
gesting and  supporting this invest igat ion and  for helpful 
discussions in the  preparat ion of this  manuscr ipt .  
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Rotatory Power and Other Optical Properties of Certain Liquid Crystals 

BY HL. Dr. VRI~S 

Physical Laboratory of the University at Groningen, Netherlands 

(Received 7 July 1950) 

A group of liquid crystals, mainly derivates of cholesterol, shows remarkable optical properties, 
including strong rotatory power and selective reflexion of circularly polarized light in a narrow 
region of wave-lengths. In  this paper it is shown how these properties can be explained by the 
assumption that  the molecules are arranged in a special way, so that  the electrical axes rotate 
screw-like. It  is inessential whether this occurs in small steps or continuously. When the axes 
make one revolution over a thickness p, then light in a region around A=pn will be reflected 
(n = refractive index). The second important parameter is the value of the double refraction 
~= (n~-nl)/n. From p and ~ all optical properties can be calculated. No accurate data for testing 
the theory are available but  qualitatively the agreement is complete. 

1. Description of  the phenomena 

From a monograph by  Friedel  (1922), we m a y  sum- 
marize the  phenomena occurring for a group of l iquid 
crystals, ma in ly  cholesterol derivates, as follows: 

(1) Strong rotatory power (see Fig. 1). I t  amounts  to 
more t han  ten  and even to hundreds  of revolutions per 
mm.,  whereas quartz gives only 24°/ram. 

(2) Whereas  in normal  substances wave-length 
regions of opposite sign of the  ro ta tory  power are 
separated by  a region of absorption, the  l iquid crystals 
have  a region of reflexion of circularly polarized light. 
One circularly polarized component  of the  incident  
beam is completely unaffected; for the  substance 
characterized by  Fig. 1 (type 'dext ro ' )  i t  is only the  
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circularly polarized beam with anticlockwise rotating 
electrical vector which is reflected.* For substances of 
the type 'laovo' all signs are reversed. 

(3) The electrical vectors of the incident and the 
reflected light rotate in opposite directions,* whereas 
the direction of rotation is unaffected by roflexion at 
normal substances. 

(4) The mean wave-length, ~ ,  of the rofloxion band 
depends on the angle of incidence qt (the angle between 
the surface and the incident beam). Approximately 
the relation is represented by h = 2d sin ¢. Apparently 
a kind of Bragg reflexion occurs on internal planes with 
a distance d of several thousand ~mgstr6m units. 
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Fig. 1. Reflexion and  ro t a to ry  power  as a func t ion  of  t he  
wave- length  ~'='~/'~o. A norma l  wave- length  scale can  be 
obta ined by  insert ing for ~0 and  ~ some numer ica l  value;  say  
550m/~ and  0.05. Curve r, r igh t -handed  ro ta t ion ;  l, left  
(arb i t rary  scale; sign of  ro ta t ion  according to normal usage). 
I ,  reflexion by  a th ick  layer.  I ' ,  in tens i ty  in the  m a x i m a  
(see also Fig. 5). 

(5) Planes of Grandjean. When the substance fills 
a wedge-shaped space bright and dark lines appear, 
which follow the lines of equal thickness. Some authors 
interpreted these dark lines as intersections ofp/anes in 
the crystal with the boundaries. I t  is remarkable that  
the distance d which can be found from these experi- 
ments agrees with d mentioned in the preceding para- 
graph. 

2. Qualitative development of the model 
The points (4) and (5) of the foregoing section suggest 

that  these liquid crystals consist of a large number of 
thin layers, and that  the light is reflected at the suc- 
cessive boundaries. Needless to say, however, refloxion 
at the boundary of two layers which make optical con- 
tact can only occur whoa there is a difference of the 
refractive indices of the layers. Suppose therefore that  
the crystal consists of thin anisotropic layers, and let the 
electrical axis in successive layers be turned through an 
angle 4. Similar piles of thin double-refracting sheets 
have often been discussed, but the roflexion was always 
neglected. Qualitatively this model easily explains 
several phenomena. The reflexion follows from the fact 
that  both linear components of the wave in one layer 

* Cont ra ry  to ord inary  usage we refer  all signs of  ro ta t ion  
to an  observer who looks in the  direct ion of  the  incident  light, 
i.e. the  posit ive z axis used in t he  theo ry  (unless s ta ted  other- 
wise). 

will experience a change of refractive index when 
passing into the next layer. The fast component will be 
reflected with phase reversal; the other component is 
reflected without reversal. This involves that  the sense 
of rotation of the electrical vector of circularly polarized 
light changes sign by the refloxion. The quantitative 
treatment in the next two sections will show that  the 
angle ~ between two successive layers is inessential for 
the phenomena, when at least the thickness p of the pile 
of layers in which the electrical axes make one complete 
revolution remains the same. Therefore the rigorous 
treatment in §§ 5-14 deals with a continuous rotation of 
the principal directions. Nevertheless, the elementary 
model is very useful since it gives a better insight into 
the mechanism. 

3. Quantitative treatment of the reflexion 
between two anisotropic layers 

We confine ourselves to perpendicular incidence. The 
x and y axes are laid along the electrical axes of the first 
layer. (Dielectric constants e 1 and e9 respectively; 
e 1 <e~.) The ~ and y axes are along the corresponding 
directions of the second layer (Fig. 2), which is turned 
through an angle ¢ (see § 2). Suppose the incident wave 
to be linearly polarized (electrical vector E). The x com- 
ponent of the wave is given by 

E~ exp [2ni(t/T- n 1 z/h) + i$x]. (1) 
Here E~=Ecosfl  (Fig. 2); hi=refractive index= ~]el; 
h=wave-length in vacuo; $~=the phase constant, 
which can be chosen zero for the incident wave by 

¢1 I "E 

Y 

Fig. 2. Co-ordinate sys tem used. 

appropriate choice of t (so $~--3~ =0). A Tri~ri we do 
not know the phase constant 3 for the reflected and 
transmitted waves. The formulae are very much 
simplified by combining these phase factors with the 
amplitude into a complex amplitude e. Then the formula 
(1) is converted into 

e~ exp [2ni(t/T- nlz/A)]. (la) 

Appropriate choice of ~ makes ¢~ and e~ real. For the y 
components n 2 should be substituted for n z. For the 
reflected waves -nz/]t is to be replaced by +nz/h. 

! I Their amplitudes will be denoted by primes, e~, %, etc. 
The reflexion can be calculated in the normal way from 
the boundary conditions at the plane between the two 
layers. The tangential components of E and H must be 
the same at both sides. H is calculated from 

10H~ 0Ex 10Hx 0E~ 
St = - 0 z '  c St = ~z" (2) 
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Combining (1) and (2) we can express H in terms of E. 
In  the plane z = 0  all exponential factors in (1) or (la) 
are the same, so that  they can be omitted from the 
boundary conditions: 

For Ex: e~+ e'~= e ~ c o s ¢ -  evsin¢, 1 

For Ev: ev+ e'v= e~sin¢+ %c os ¢ , [  

:For H~: nnev-n~e~=nzefsin¢+ngevcos¢, I (3) 

:ForHv: nze,-nze'x=nze~cos¢-ngevsin ¢.)  

We give here only the amplitudes of the reflected 
w a v e  , . n 2 - -  n I . 

e~ =-- ( -- e~ sm ¢ + e~ cos ¢) ~ sm ¢. 

Here some simplification has been made, which is 
justified when (n~-nl) is small; this is generally the 
case. We have further put  n~ + n~ = 2n. This formula, as 
well as the exact one, involves tha t  there is no phase 

! 
shift between the incident and the reflected wave; e~ 
is real, since e~ and ey could be chosen real. A phase 
reversal will be expressed by the sign of e' x. 

In the notation of §6 (n2-nz)/n=a. Inserting, 
furthermore, e~=Ecosfl and ev=Esinfl (see :Fig. 2), 
one obtains 

e', = E sin ¢).  sin ¢, t 
and similarly el~ = E cos (fl - ¢) .  ½a sin ¢. • (4) 

Obviously e'x and e~ are components of a vector e', 
which makes an angle fl'= 9 0 - f l +  ¢ with the x axis. 
I ts  length is ½a E sin ¢. 

4. T h e  i n t e r f e r e n c e  o f  t h e  r e f l e c t e d  w a v e s  
( d i s c r e t e  l a y e r s )  

In  order to find the combined effect of a pile of thin 
layers it should be noted that ,  approximately, the 
vector E has a constant length and direction throughout 
the system. This means tha t  fl decreases by ¢ for the 
successive layers, since we make use of a rotating co- 
ordinate system. Consequently/? '  increases by ¢ (see 
equation (3)), and relative to a fixed direction e' rotates 
2¢ at  subsequent boundaries. When the waves arrive 
at  the surface they have relative orientations as given 
in Fig. 3. (Multiple re flexions are neglected.) The phase 
difference of two successive waves is 2nb, b being the 
thickness of one layer. I t  will be clear from Fig. 3 tha t  
there will be a maximum of intensity when E '  z and 

f I t E~, E~ and E 8, etc., are in phase. This requires tha t  
27r 27r 
2-~ 2nb =h .  The same formula is obtained when ~¢ is 

not an integer. The thickness, p, of a pile in which there 
is a complete revolution of the principal directions 

2 n  
equals -~  b, so tha t  the condition for a maximum be- 

comes pn=A. (5) 

I t  should be noted tha t  2A would not fit, since in this 
case E 1 and E 4, etc. would compensate each other. 
The next possibility is 7~, 13h, etc., but this leads to 
unreasonably large values of p. 

According to (5) the wave-length h of maximum 
reflexion depends on p only, whereas the value of b is 
inessential. The only value of b which would give special 
results is b = ~p and ¢ = ½1r. In this case all partial waves 
E' have the same direction, and the resulting reflected 
wave will be linearly polarized. When ¢ # ½n it can be 
proved tha t  the resulting wave is circularly polarized. 
This can be understood qualitatively from Fig. 3. First 
E z reaches its maximum; then E~, etc. So we see the 
maximum rotate in a clockwise direction, i.e. the sense 
in which the subsequent principal directions rotate. The 
length of the resulting vector is ½kE', k being the 
number of layers in the pile, and E' the amplitude of 
one partial wave. E '  = ½~ E sin ¢. For small values of ¢ 
the amplitude of the circular wave reduces to 

~a Ek¢ = ½a ~dh -z hE, 
where d = kb. 

Fig. 3. The partial waves E~, etc., from successive 
planes of reflexion, for ~ = 30 °. 

Here again the result does not depend on the thickness 
of one layer. For this reason we shall proceed in the 
following sections with a model in which the electrical 
axes turn continuously, though part  of the results to 
be obtained there could perhaps also be derived from 
the present model. 

Only one implication of the present theory has still 
to be mentioned. When the incident beam is circularly 
polarized with a clockwise rotating vector it is easily 
seen tha t  the two reflected circular waves originating 
from its linear components just cancel out, whereas an 
incident beam with anticlockwise rotating vector gives 
waves reflected in phase with a clockwise rotating 
vector. This agrees with the properties summarized in 
§ 1. When the length of the rotating vector is E, the 
amplitude of the reflected wave is twice the value found 
above, i.e. E '  = a~dh -1 nE. (6) 

5. Rigorous treatment for continuously changing 
e l e c t r i c a l  a x e s  

I t  was shown that  the thickness b of one (hypothetical) 
layer was inessential for the phenomena. Moreover, the 
existence of a well-defined thickness would require a 
special explanation. I t  seems therefore more reasonable 
to assume continuous rotation of the principal directions. 
When the substance reflects visible light, p equals about 
0.5/~ and the rotation of the principal directions is about 
1 ° for a monomolecular layer. This must be related 
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with the form and the arrangement of the molecules in 
some way, but  it is beyond the scope of the present 
paper to explain this. I have found that  a similar 
continuous rotation was already supposed to exist in 
azoxyphenetol by Mauguin (1911). This substance 
showed remarkable optical properties when the cover- 
glass was rotated through an angle ¢. These phenomena 
could be explained by supposing tha t  the cover-glass 
dragged the principal directions of the adhering layer 
of the crystal with it, so tha t  the crystal acquired a 
screw structure in which the electrical axes change their 
orientation continuously from the lower glass to the 
cover-glass. Our hypothesis for the cholesterol deri- 
ra tes  differs from the model of Mauguin in two ways: 
(1) spontaneous rotation, (2) a large number of re- 
volutions with a pitch p ~ A, whereas the rotation in 
Mauguin's experiments was smaller than 90 ° and 
p>>~. 

5. The  normal  waves  in the screw structure 

The well-known relations between D and E for a wave 
in the direction of the z axis are given by 

1 02Dx 0Ex 1 ~2Dv ~ E v  
--  - -  -- D~ = 0 .  (7) 

C 2 0 t  2 OZ 2 '  e2 at 2 OZ 2 ' 

The relations between D and E have a simple form in 
the ~-y system (see :Fig. 2), where the axes ~ and 'q are 
perpendicular to the z axis and in the direction of the 
electrical axes of the crystal. We suppose the angle ¢ 
between ~ and x to depend on z, ¢ = 21rz/p (see also § 2). 
Here p stands for the pitch of the 'screw'.  In  this 
system we have D~ = elE ~, D,1 = e~E, 1 . Suppose e9 > ea. 

In  order to use the relations (7) it is necessary to 
transform them into the ~-y system. According to 
:Fig. 2 one can write 

E z = E ~ cos 2~t z/p - E,~ sin 2nz /p , t 
E~ = E~ sin 2~rz/p + E~ cos 2nz /p . ,  (8) 

Similar relations hold for D. With these values (7) takes 
the form 

e~ O~E~ O~E~ 4~ OE,~ 4~ 2_  
c a Ot ~ = Oz 2 10 Oz - ~ E ~ , [  • 

e~ 0 2 E , _  02Eq 4~r 0E~ 4St ~' l (9) 
c ~ ~t ~ 0z~ 6 p ~z ~-~ E , . j  

As a solution we t ry  

E~= A exp rn (10) 
E,~=iB T - - - ~  " 

This is an elliptically polarized wave in the ~-y system. 
I t  would be misleading to call m the refractive index, 
though it plays this role in (10). I t  has very uncommon 
properties, since (10) describes the wave motion in a 
'screwed' system. By substituting (10) in (9) one 
obtains Q m 9' m A 

A ~ = A  ~-ff + 2B ~p +~-~,[ 

e 2 ,m 2 m B / (l 1) 
B --~ = B - f f  + 2 A -~p + -~ . J 

Eliminating B / A ,  

m4-m2(el  + e~ + 2~/pD + (el- A~/p2) (e~- X~/f) =0. 
(12) 

The t reatment  of these equations is simplified by intro- 
ducing ' reduced'  quantities: Ar=2t/(p4e); m ' = m / 4 e .  
According to (5) reflexion occurs for A'= 1. e stands 
for the mean dielectric constant (e= ½(el +e2)). 
(ep-el)/(2e) = a  is a measure of the double refraction. 
a =  0.05 fits rather well the data reported by Friedel 
(1922). 

Equation (12) in its ' reduced'  form is 

m'4- -2m '9" (1 +A '9") + (1 - a - - A  '2) (1 + a - - h  '~) =0.  (12a) 

B 1 - c e - m ' ~ - A  '2 (13) 
Finally f = A  - 2m'h' 

Apart  from the nota'tion, these formulae were also given 
by Mauguin (1911). 

7. D i s c u s s i o n  o f  the equat ions  

Equation (12) gives two values for m '9. The larger one, 
t 2 m S , proves to be positive for all values of A'. The other 

root, ml ~, is negative if 1 - a < h '~ < 1 + ~. (For these 
values of A' 9. the product of the roots of (12a) is negative.) 
This implies that  m 1' is imaginary in the region where 
the reflexion occurs according to equation (5). This 
reflexion will be dealt with in §§ 8 and 9. :For m' one 
of the roots ofm '9 can be chosen. One is inclined to take 
the positive root since (10) has to represent a wave in 
the positive direction of the z axis. I t  will be shown, 
however, in §§ 7 and 8 (footnotes) tha t  m~ has to be 
negative when ~'~> 1 + a. A positive value would give 
a wave in the wrong direction. 

For part  of the discussion we want explicit ex- 
pressions for m~ and m~.; these are obtained by  ex- 
panding in series: 

8A'(1 (14) 
r CZ2 

m2= 1 +A'+SA,(1 +A, ) t-. 

:For h '2 < a and A'~  1 other expansions should be used. 
Each value of m corresponds to a normal wave with an 
ellipticity B / A  which is obtained from (13). B~/A~ is 
always real and negative, corresponding to an electrical 
vector which rotates in clockwise direction. B1/A 1 is 
real and negative except for the region of total reflexion 
(see Fig. 1). The values of B / A  and m' are given 
graphically in :Fig. 4. 

The first wave in the region [ 1-A'21 < a requires 
special discussion. Substituting in (9) an imaginary 
value of  re', m' = - i/t, where # stands for a real number, 

one obtains E ~ = A I  e-~ '~  I~ cos 2 ~ / T ,  t 

E,  1 = iB1 e-9"~ 1~ cos 2 ~ / T .  , (15) 

I t  follows from (13) tha t  i B / A  is real in this region 
so tha t  the resulting wave is linearly polarized. I ts  
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amplitude decreases by the exponential factor and its 
phase does not depend on z. 

Not too much stress should be laid upon the waves in 
the crystal since these waves are unobservable, in con- 
t rast  to the waves tha t  leave the crystal. 

7 

-II I I t I I I I I i I I I I I I I 

o 0"2 0-4 0"6 0"8 1"0 1-2 1"4 1"6 1"8 

Fig. 4. Curves I and  IX, the  elliptieities B1/A 1 and  --A~/Bg. of  
the  two norma l  waves,  m~ and  m'2, the  ' r e f rac t ive  indices'  
(see text) .  Vert ical  lines a t  h ' = l + _ ½ a .  Arbi t ra r i ly  a was 
chosen as 0"05. 

8. The rotatory power 

(A) Mauguin (1911) confined himself to the case 
p>>h. The two normal waves are nearly linearly 
polarized since B1/AI,.~A~./B~O. The first wave is 
polarized along the ~ axis, the second wave along the y 
axis. Since the ~--~ system rotates relative to a fixed 
system of co-ordinates, the planes of polarization also 
rotate. The sense of rotation is the same as the sense of 
rotation of the cover-glass (see §5). This rotation is 
superimposed on the normal phenomena of double re- 
fraction, the refractive indices m 1 and m s (10) having 
the 'normal '  values @1 and ~/e~. 

(B) Larger values of A'. Here the normal waves are 
nearly circularly polarized with opposite sign of rotation 
and a different velocity (see § 6). This brings about a 
rotation of the plane of polarization of a linearly 
polarized beam which can be considered as resulting 
from these normal waves. The direction of the resulting 
vector is the bisector of the angle between simultaneous 
positions of the two rotating vectors. Calling the angles 
of these three vectors with the x axis ~r, ~r 1 and ~ 
respectively, the rotatory power is 

dz - 2 + t" 

Now (~¢,'/az)t consists of two parts: its rotation in the 
~-~ system and the rotation of this system itself. One 
finds 

O~r2--2n(1--m'~/2t') and O~r1-27r(l+m~/a').  
az p Oz p 

Inserting m' from (14) this becomes 

0~1  - 27/" 1 + 

az ph '  8h'(1 -A ' )  (16) 

Oz pA' 8•'(1 +X') + 
Unless h' z 1, a~kl/az approximately equals 2n~/e/A. This 
has a simple physical meaning. When we consider the 
simultaneous positions of the rotating vectors for 
different values of z, they  are arranged in a screwlike 
way. A vector which rotates (in the course of time) in 
a clockwise direction will make a left-turning screw. 
So the first wave should make a right-turning screw, its 
pitch being one wave-length (A/~/e). Indeed, (16) gives 
the correct sign and magnitude.* The rotatory power 
comes out as a~r 27r a ~ 

d z -  P 8A,9.(l_h,~). (17) 

The factor ( 1 - h  '2) causes the remarkable phenomena 
described in § 1. For h'~'< ( 1 - a )  the electrical vector 
rotates in anticlockwise direction since d~/dz is 
negative. When the wave moves towards the observer 
he sees a clockwise rotation; indeed, in Fig. 1 it is seen 
that  the rotatory power should be right-handed for 
~' < 1. For ~' > 1 the sign changes because of the factor 
(1 _X,2) in (17). The magnitude of d~/dz is also of the 
right order. At  the edges of the region R we know tha t  
1 - h ' 2 = a .  According to (17), the rotatory power be- 

dCr 2~ra 
comes dz p 8" Inserting p = 0.4# and a = 0-05, which 

gives a reasonable band of reflexion (see Fig. 1), the 
rotatory power becomes 16 revolutions per mm. 

Because of the factor ~,2 the decrease of the rotatory 
power is most pronounced at  the long-wave-length side 
of the reflexion band; this agrees with the experimental 
results. 

Up to now we have neglected the fact that  the waves 
are not exactly circularly polarized. This is unimportant ,  
however, since it will be shown in §§ 8 and 9 tha t  the wave 
which leaves the crystal is nearly circularly polarized. 
Furthermore, the amplitude of the first wave is smaller 
than the amplitude of the second wave, at  least close to R. 
This makes the resulting wave elliptically polarized. 
The rotatory power is now a rotatory power of the long 
axis. At the edges of the region R the first wave has an 
intensity zero; this explains why the rotatory power dis- 
appears. Even when the intensity of the first wave does 
not vanish completely (when the layer of crystal is thin) 
the rotatory power will disappear since the emerging 
wave results then from a large number of internal re- 
flexions (see § 11). 

I f  the reflexion is neglected a pile of doubly refracting 
sheets still shows rotatory power 

de/ 27ra~ 
dz 8p;t "~ " 

* It should be remarked here that ~b~/Oz would come out 
with the wrong sign if for m~ a positive value had been chosen 
in the region ~'> 1. 
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This is, in our notation, a formula given by Pockels 
(1906, p. 291) and simplified by  supposing tha t  the 
angle ~ between subsequent layers is small. I t  differs 
from our formula (17) just  by  the important  factor 
(1 - ~'~) in the denominator. 

Finally, it can be remarked tha t  the formula does not 
apply to substances like quartz which have a screw 
axis on an atomic scale. Inserting reasonable values 
for a and T, one arrives at  very small rotatory powers. 
Moreover d~/dz would be proportional to X -4, whereas 
it  should be proportional to ~_9.. These rotatory powers 
have already been explained in a quite different way. 

9.  C a l c u l a t i o n  o f  t h e  r e f l e x i o n  a t  t h e  b o u n d a r i e s  
of a liquid crystal 

On both sides of the boundaries E and H must be the 
same; this gives again the relations between incident 
and reflected waves. H can be expressed in terms of 
E by combining (10), (8) and (2). 

One finds 

Hi= - iA[A/p+mf]  } exp [2.i(t/T-mz/h)]. (18) 
H~= A[~+ (a/p)/] 

These formulae become more comprehensible when the 
factor [m + (Alp)f]= (~/e) (m' + A'f) is considered in more 
detail. I t  can be shown tha t  (m '+  h'f) is nearly unity, 
except for the first wave in the region A' ~ 1. This means 
tha t  m+ (h/p)f is nearly the normal refractive index. 

Furthermore, h' +re'f= f . (This can be proved 
~.'f +m ! 

from (12) and (13).) Denoting h' f+m' by q, (18) re- 
duces to 

~ = - ~ E ,  and H~=q~/~E~. (lSa) 

The only difference from the corresponding formulae for 
a normal substance (see (19)) is the factor q which is 
exactly uni ty  for normal substances. These formulae 
demonstrate once more tha t  m does not play the role 
of the refractive index.* 

A. The boundary glass-crystal 
The components of the incident and the reflected 

wave in the cover-glass are represented by 

E= g= ) 
exp [21ri(t/T- noz/h) ] 

E~ = i% ) 
E '~ = e'x 

l exp [27ri(t/T + noz/;t)] I l • I 

E ~  ~ ~e v ) 

H~ = nee x,] 

H'~-- 
H'= noE~.j 

(19) 

* Fo rmu la  (18a) enables  the  calculat ion of  the  P o y n t i n g  
C 

vector  P----~-~ [E, H ]  which gives the  direct ion and the  magni- 

t ude  of  the  p ropaga t ion  of  energy.  P is zero for the  first w a v e  
in the  region of  to ta l  reflexion, since the  imaginary  va lue  of  q 
causes a phase  shift  of  90 ° be tween  E and  H .  The sign of  P 
depends  on the  sign of  m, chosen in § 7. I t  was  an t ic ipa ted  
there  tha t  m~ had  to be  chosen negat ive  for h '2>  (1+c¢). A 
posi t ive value  wmfld have  given a negat ive  P ;  this means  tha t  
the  wave  would p ropaga te  in the  direct ion of  the  negat ive  
z axis. 

I t  has been explained already in § 3 tha t  the ampli- 
tudes e may  be complex in order to account for phase 
shifts. Since the waves turn  out to be elliptically 
polarized we have denoted the y amplitudes by  i% so 
tha t  % will in general be real. 

In  order to avoid the normal reflexion at  the boundary 
we will suppose n o of the glass to be equal to ~/e of the 
crystal. The boundary conditions for E and H can now 
be written as 

| 
. _ ,=q . ,  f (20) 

I t  is supposed here tha t  the incident wave is chosen so 
tha t  only one normM wave in the crystal results. 

The equations are solved by 
? I 

- -  % . ,  m 2% A ( l + q )  c A = _  = a  + 

2%= Af(l+q)/q and e, ~ - f ' ( ( 2 1 )  
A(1-q) 1-q [ 

2e'~=-Af(1-q)/q e~ = % = i - - ~ ' 1  

B. The boundary crystal~lass 
This can be treated in a similar way. I t  should be 

noted tha t  m, f and q for the reflected wave change sign 
(see (13)). The first important  result is tha t  the first 
normal wave in the crystM gives rise to a reflected 
wave which also consists of the first normal wave only. 
The same holds for the second wave. Therefore we can 
confine ourselves to one incident normM wave. The 
results are 

A ' =  1 - q  

Here A'  stands for the amplitude of the reflected wave; 
/ /  / /  

e= and % represent the amplitudes of the outgoing 
wave in the glass. 

10.  R e f l e x i o n  a t  t h e  boundaries (discussion) 

A. The, polarization of the waves 
e x e;  - t i t  

According to (21) and (22) - - = - ~ = A  +-T"  When 
e u ey j 

h' > a (i.e. the region we are interested in) this is approxi- 
mately equal to 1 + ½a/h for the first wave, or - 1 + ½a/~ 
for the second wave ((12) and (13)). This means tha t  the 
waves in the glass are nearly circularly polarized. The 
waves in the glass which correspond to the first wave 
in the crystM and which move in the direction of the 
incident light have an anticlockwise rotating electrical 
vector. The deviations from circularity are in opposite 
directions for both waves, but  they are very small 
whereas these deviations for the waves in the crystal 
may be very large (see Fig. 4). I t  is easily found from 
the formulae tha t  the sense of the rotation is reversed 
by the reflexion. 
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B. The phase relations 
Except for the first wave in the region 1 1 -  h'gl < a, 

the 'refractive index'  q is real. According to (21) and 
(22) this means that  the ratios e'x/ex, etc., are real, so 
that  there is no phase shift• In the region of total 
reflexion, however, the first wave has an imaginary q 
and e'x/ex=(1-q)/(1 +q)is complex. I f  arc tan I q l=¢,  
there is a phase shift of 2q5 between the incident and the 
reflected wave• Of course this phase shift is of no direct 
importance in the measurements. I t  is only a serious 
complication of the calculations when one does not 
make use of complex amplitudes. 

C. The intensity of the reflected wave 
According to (21) and (22) the refiexion is governed 

by the factor (1-q)/(l+q).  I t  can be shown tha t  
( 1 - q )  is approximately equal to ½a/m. This approxi- 
mation does not hold for the first wave in the region 
h ' z l ,  where m ' ~ 0 ;  this region will be considered 
separately. Since a is very small, and m'~  1 or even 
larger, the amplitude of the reflected wave is at  most 
~a times the amplitude of the incident wave• For very 
large wave-lengths, zl', the reflexion goes to zero since 
m' ~ 1 _+ ~' (see (14)). This is reasonable since, for a long 
wave-length, only the mean refractive index, no, is of 
interest. We have chosen n o equal to the refractive index 
of the cover-glass so that  the normal reflexion vanishes. 
The intensity of the reflected wave is proportional to 
the square of the amplitude. Since the latter is small 
the former can be neglected completely• 

D. The re flexion of the first wave in the region h' ~ 1 
For I 1 -  A.'~ I < a, q is imaginary. The absolute value 

of e~/e~= (1 -q) / (1  +q) equals unity. This means that  
the wave is completely reflected. For h'2< ( 1 - a )  or 
h'~> (1 +a) ,  but  not too far from zl '= 1, the reflexion is 
still appreciable (see Fig. 1). 

Of course both reflexions at the upper and the lower 
boundary of the crystal have to be taken into account, 
as well as multiple reflexions of the wave in the crystal. 
This will be done in the next section• 

11. R e f l e x i o n  at  t h i n  layers  

According to § 10 we can confine ourselves to the first 
wave with an anticlockwise rotating electrical vector 
and the region h ' ~  1. We have found already that  all 
reflected waves have an electrical vector which rotates 
clockwise. Generally, however, there is a phase differ- 
ence. Beyond the region of total reflexion, this is a con- 
sequence of the difference in optical path, d, traversed. 
In  the region of total reflexion the phase difference 
results from the reflexion. Moreover, there is a differ- 
ence in amplitude. In the region of total reflexion this 
results from a decrease of amplitude in the layer, 
beyond this region it is caused by reflexion at the 
boundaries. When the amplitude of the incident circu- 
larly polarized wave ex equals unity, the amplitude of 

AC4 

the first reflected wave e'~ equals (1 -q) / (1 + q), whereas 
A1=2/(1 +q) (equation (22)). At the second boundary 

• t 1 this amplitude is A 1 exp [ -  27r~mldh- ~/e] =Als. Here s 
represents the absorption when mr1 is imaginary, and 
the phase shift when m' 1 is real. Each of the successive 
waves which leave the crystal is obtained from the 
foregoing one by multiplication by {s(1-q)/(l+q)} 2. 
Summing the geometric series the total amplitude of the 
reflected wave is: 

( l -q2 )  (1-sg)  (23) 
R - ( 1  +q)2_s2(l_q)~" 

R is complex. Since we are only interested in the ampli- 
tude, we consider its absolute value• 

(1) Beyond the region of total reflexion 
Here q is real and s ~ is complex. Therefore s ~ can be 

represented by s 9 = cos 2~ + i sin 2~, where ~ stands for 
the phase shift in the layer d, or ~= 2zrm' 1 dA -1 ~/e. The 
intensity R 9" of the reflected wave is then 

(1 - q2)2 sin 2 ~ (24) 
R ~ -  (1 - qg)~ sin ~ ~ + 4q~" 

The intensity R ~ is thus a periodic function of the thick- 
ness d. When ~ = 0  °, 180 °, etc., the reflected wave 
vanishes; R ~ reaches a maximum for ~=90 °, 270 °, etc. 

loo , -  
0475  j 

",~ / '~/~//~'--~ 0"75 

0 4 2' 3 '4  ' ~ i  ' 6 ~d"  8 9 '10 

Fig. 5. The reflexion as a funct ion  of  the  reduced  thickness  
d'----2rrdh -1 a~/e. The wave- length  is A ' = l - - m a ,  m being 
given in the  figure. Fo r  m >  0"5 the  curves  are  periodic;  the  
m a x i m a  and  min ima  have  been  m a r k e d  b y  ver t ical  lines. 

The relation (24) is represented in Fig. 5. I t  is seen tha t  
the fluctuations become slower when A' approaches 
unity. This also follows from the simple reasoning of 
§ 4. When ~' is close to the right value, the deviation 
makes itself perceptible only when the wave is reflected 
on a large number of layers. 

(2) Inside the region of total reflexion 
Here s is real and q becomes imaginary (q2 negative). 

One finds now 
(1-s~)~ (1-q2) ~ 

R 2 -  (1 -s2)  ~ (1 -q2)9_ 16s~q~" (24) 

This function is also represented in Fig. 5. The first 
parts of all curves are seen to be nearly identical and 
can be derived from the formulae that  the amplitude R 
for thin layers equals lradl1-1 ~/e. This formula was 
derived in § 4 in an elementary way (equation (6)). 

I5 
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12. Numerical calculations 

Strictly speaking numerical calculations can be per- 
formed only ff a special value of a is chosen. The para- 
meter p is eliminated by making use of the reduced 
wave-length h'=~t/(p~e). For small values of a, how- 
ever, one can find very good approximations, in which 

is also eliminated. For these small values of a the 
reflexion is symmetrical at both sides of h' = 1; therefore 
we confine ourselves to h ' ~  1. Introducing A, so tha t  
h'9= 1 - a ( 1  +A), one finds by expanding in series: 

, / a , '  f f 2 - - ~  A 

In the region of total  reflexion A varies from --1 to 0, 
so tha t  m~ andf l  are imaginary. In the expression for s 
(see § 10) the exponent 2,im~dA -1 ~e can be 'normal- 
ized' by  introducing d ' =  2~adh -1 ~/e. Here d' will be 
called the reduced thickness. The exponent becomes 
now d'~/(2A +Ag'). So there is only one parameter A 
left. 

13. The planes of Grandjean 
The phenomena predicted in the foregoing sections do 
not include the periodic bright and dark lines described 
in § 1 (5). I t  seems to us, therefore, that  these lines are 
caused by periodical disturbances of the serewlike 
structure. I t  is probable that  the orientation of the 
molecules in the two boundaries is prescribed by the 
structure of the surfaces especially when the wedge 
consists of mica, which is often used. When the pitch, f, 
of the screw exactly fits the width, w, of the wedge the 
screwlike structure can develop. This requires tha t  w 
equals ½kp, or perhaps kp (k integer). Of course there 
are other parts of the wedge where the structure does 
not fit in w, so tha t  the normal arrangement is disturbed 
and dark lines appear between crossed nicols. This 
hypothesis also explains why the planes of Grandjean 
are less pronounced when a wedge of glass is used since, 
generally, glass will not show these preferred directions. 
I t  is important  to know, however, that  the s tudy of 
liquid crystals has often revealed the existence of pre- 
ferred orientations even on glass (see Mauguin, 1911). 

I f  this explanation is correct the planes of Grandjean 
should not be visible in light containing only the 
second normal wave, which is unaffected even when the 
serewlike structure is present. This has in fact been 
found. The experiments should, however, be repeated 
in monochromatic light. 

14. Comparison with the experiments 
In the course of the discussions it has been shown 
already tha t  qualitatively the predictions of the theory 
agree with the experimental results summarized in § 1. 
No complete data are available to test the theory 
quantitatively. The measurements would not be diffi- 
cult to make, however, since the theory contains only 
three constants, p, a and the refractive index n, which 
can be determined in various ways. The quant i ty  p is 
determined from the wave-length 20 of the central part  
of the reflexion band (pn = ~).  The wave-lengths can be 
reduced to 2' by dividing them by ~0 (A' =h/~o). The 
quant i ty  a can be determined from the width of the 
band (see Figs. 1 and 5). Then the rotatory power and 
the intensity of the reflected beam can be calculated as 
a function of h; they depend only on a (see Fig. 5). The 
interesting fluctuations, shown in Fig. 5, have not yet  
been observed. 

Finally, a appears in the ellipticity of the reflected 
beam. When a is not too small the ellipticity can be 
determined, as well as the directions of the axes. The 
latter are interesting with respect to the occurrence of 
fixed orientations on the cover-glass mentioned in § 12. 

We have confined ourselves to perpendicular in- 
eidence. Oblique incidence may give rise to new pheno- 
mena which perhaps have been observed already 
though they still lack an explanation. 

I express my thanks to Hn. de Vries (de Vries & 
Backer, 1950), who made some new cholesterol de- 
rivates which drew our attention to this class of liquid 
crystals, and especially to Dr W. G. Perdok, who made 
some orientating observations which afterwards proved 
to agree with the descriptions given by Friedel (1922). 
At present Dr Perdok is testing the theory and its basic 
assumptions quantitatively. 

Finally, I thank Prof. F. Zernike and Prof. H. 
Brinkman for some improvements in the text  of the 
manuscript. 
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