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The shortening of the metal-halogen bond has been
previously observed in the results of electron-diffraction
studies of metal halide molecules in the vapor state. It
has been pointed out by several observers (Schomaker &
Stevenson, 1941 ; Burawoy, 1943 ; Warhurst, 1949) that
a decrease in bond distance is to be expected as the bond
acquires more ionic character. Another explanation
(Pauling, 1940, p. 228) attributes the shortening to
partisl double-bond character of the bond. Kither
explanation is applicable to AlC],.

Table 4. Interatomic distances (in Angstrom units)
Distances in the AlCl; tetrahedron

Cl; —Cly; 3-48 Al-Cly 2-16

Cl; —Clyyy 3-51 Al-Cly; 2-11

Cl; ~Cl;y 3-54 Al-Clyyq 2:13

Clyy —Clyrg 3-49 Al-Clyy 2:12

Cly; —Clyy 3:46
Cly Cl;y 3-39
Other distances

Na~Cly 3-08 Cl—Clyy 3-85 Cl—Cly 3:85
Cl; 3:20 Clyy 3-86 Cl; 3-86
Clyy 2-88 Cly; 4-03 Cl; 4-03
Cly; 372 Clyp 377 Clyy 374
Cly; 279 Clyy; 395 Clyy 391
Clyy 329 Cliy 369 v 374
Cliy 2:96 Cliy 381 Cliy 379
Cl;y 3-06 Cliy 392 Clyy 406

Cly—Cly 374 Clv—Cl; 3-69

Cl; 377 Cl; 3-81

Cl; 3-95 Cl; 3-92

Cly; 391 Clyy 374

Cl; 374 Clyy 3-79

Clyy 374 Clyy 4-06

Clyy 378 Cly; 378
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The sodium ions are located in the empty spaces
between the tetrahedra. All the sodium~—chlorine dis-
tances are larger than the sum of ionic radii, 2-76 A.
The sodium atom has seven chlorine neighbors from
279 to 3-29 A. distant with one chlorine atom much
farther away at 3-72 A. Interatomic distances are listed
in Table 4.

The author wishes to thank Dr H. P. Klug for sug-
gesting and supporting this investigation and for helpful
discussions in the preparation of this manuscript.
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Rotatory Power and Other Optical Properties of Certain Liquid Crystals

By Hr. pE VRIES
Physical Laboratory of the University at Groningen, Netherlands

(Received T July 1950)

A group of liquid crystals, mainly derivates of cholesterol, shows remarkable optical properties,
including strong rotatory power and selective reflexion of circularly polarized light in a narrow
region of wave-lengths. In this paper it is shown how these properties can be explained by the
assumption that the molecules are arranged in a special way, so that the electrical axes rotate
screw-like. It is inessential whether this occurs in small steps or continuously. When the axes
make one revolution over a thickness p, then light in a region around A=pn will be reflected
(n=refractive index). The second important parameter is the value of the double refraction
o= (ny—n,)/n. From p and e all optical properties can be calculated. No accurate data for testing
the theory are available but qualitatively the agreement is complete.

1. Description of the phenomena

From a monograph by Friedel (1922), we may sum-
marize the phenomena occurring for a group of liquid
crystals, mainly cholesterol derivates, as follows:

(1) Strong rotatory power (see Fig. 1). It amounts to
more than ten and even to hundreds of revolutions per
mm., whereas quartz gives only 24°/mm.

(2) Whereas in normal substances wave-length
regions of opposite sign of the rotatory power are
separated by a region of absorption, the liquid crystals
have a region of reflexion of circularly polarized light.
One circularly polarized component of the incident
beam is completely unaffected; for the substance
characterized by Fig. 1 (type ‘dextro’) it is only the
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circularly polarized beam with anticlockwise rotating
electrical vector which is reflected.* For substances of
the type ‘laevo’ all signs are reversed.

(3) The electrical vectors of the incident and the
reflected light rotate in opposite directions,* whereas
the direction of rotation is unaffected by reflexion at
normal substances.

(4) The mean wave-length, A,, of the reflexion band
depends on the angle of incidence ¢ (the angle between
the surface and the incident beam). Approximately
the relation is represented by A=2d sin ¢. Apparently
a kind of Bragg reflexion occurs on internal planes with
a distance d of several thousand Angstrém units.
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Fig. 1. Reflexion and rotatory power as a function of the
wave-length A’=2A/A,. A normal wave-length scale can be
obtained by inserting for A, and « some numerical value; say
550 my and 0-05. Curve 7, right-handed rotation; I, left
(arbitrary scale; sign of rotation according to normal usage).
I, reflexion by & thick layer. I’, intensity in the maxima
(see also Fig. 5).

(56) Planes of Grandjean. When the substance fills
a wedge-shaped space bright and dark lines appear,
which follow the lines of equal thickness. Some authors
interpreted these dark lines as intersections of planes in
the crystal with the boundaries. It is remarkable that
the distance d which can be found from these experi-
ments agrees with d mentioned in the preceding para-

graph.

2. Qualitative development of the model

The points (4) and (5) of the foregoing section suggest
that these liquid crystals consist of a large number of
thin layers, and that the light is reflected at the suc-
cessive boundaries. Needless to say, however, reflexion
at the boundary of two layers which make optical con-
tact can only occur when there is a difference of the
refractive indices of the layers. Suppose therefore that
the crystal consists of thin anisofropic layers, and let the
electrical axis in successive layers be turned through an
angle ¢. Similar piles of thin double-refracting sheets
have often been discussed, but the reflexion was always
neglected. Qualitatively this model easily explains
several phenomena. The reflexion follows from the fact
that both linear components of the wave in one layer

* Contrary to ordinary usage we refer all signs of rotation
to an observer who looks in the direction of the incident light,

i.e. the positive z axis used in the theory (unless stated other-
wise).

will experience a change of refractive index when
passing into the next layer. The fast component will be
reflected with phase reversal; the other component is
reflected without reversal. This involves that the sense
of rotation of the electrical vector of circularly polarized
light changes sign by the reflexion. The quantitative
treatment in the next two sections will show that the
angle ¢ between two successive layers is inessential for
the phenomena, when at least the thickness p of the pile
of layers in which the electrical axes make one complete
revolution remains the same. Therefore the rigorous
treatment in §§ 5-14 deals with a continuous rotation of
the principal directions. Nevertheless, the elementary
model is very useful since it gives a better insight into
the mechanism,

3. Quantitative treatment of the reflexion

between two anisotropic layers
We confine ourselves to perpendicular incidence. The
z and y axes are laid along the electrical axes of the first
layer. (Dielectric constants €, and e, respectively;
€;<¢€,.) The § and 7 axes are along the corresponding
directions of the second layer (Fig. 2), which is turned
through an angle ¢ (see §2). Suppose the incident wave
to be linearly polarized (electrical vector E). The x com-
ponent of the wave is given by

B exp [2mi(t|/T —ny2/A) +16,]. (1)
Here E,=E cosf (Fig. 2); n,=refractive index= J&,;
A=wave-length ¢»n vacuo; J,=the phase constant,
which can be chosen zero for the incident wave by

Fig. 2. Co-ordinate system used.

appropriate choice of ¢ (so ,=68,=0). A priori we do
not know the phase constant & for the reflected and
transmitted waves. The formulae are very much
simplified by combining these phase factors with the
amplitude into a complex amplitude e. Then the formula
(1) is converted into

e, eXp [2mi(t/T —n,2/A)]. (la)
Appropriate choice of ¢ makes e, and e, real. For the y
components n, should be substituted for n,. For the
reflected waves —mnz/A is to be replaced by +mnz/A.
Their amplitudes will be denoted by primes, ¢;, e,, etc.
The reflexion can be calculated in the normal way from
the boundary conditions at the plane between the two
layers. The tangential components of £ and H must be
the same at both sides. H is calculated from

\oH,__oB, 1oH,_om,
cd o2’ ¢ oz

@)
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Combining (1) and (2) we can express H in terms of E.
In the plane z=0 all exponential factors in (1) or (1a)
are the same, so that they can be omitted from the
boundary conditions:

’ .

For E: est e;= e;cosp— e, sing,

For E,: e,+ e,= esing+ e, cosg, @)
b .

ForH,: nge,—nyej=n,¢e;5ind+nye,cos d,
’ .

ForH,: ne,—mne,=n,e cos g—nye,sing.

We give here only the amplitudes of the reflected
wave Noo— T
e, =(—e,sind+e,cos P) ——sin P,

2n

Here some simplification has been made, which is
justified when (n,—n,) is small; this is generally the
case. We have further put n, +n,=2n. This formula, as
well as the exact one, involves that there is no phase
shift between the incident and the reflected wave; e;,
is real, since e, and e, could be chosen real. A phase
reversal will be expressed by the sign of e,

In the notation of §6 (n,—n,)/n=a. Inserting,
furthermore, e,=E cosf and e,=Esinf (see Fig. 2),

one obtains
ez=Esin(f—¢).3asing,
and similarly e; =E cos (8 —¢) . }asin .

Obviously e, and e, are components of a vector ¢,

which makes an angle §'=90—/+ ¢ with the z axis.
Its length is $a E sin ¢.

(4)

4. The interference of the reflected waves
(discrete layers)
In order to find the combined effect of a pile of thin
layers it should be noted that, approximately, the
vector E has a constant length and direction throughout
the system. This means that § decreases by ¢ for the
successive layers, since we make use of a rotating co-
ordinate system. Consequently £’ increases by ¢ (see
equation (3)), and relative to a fixed direction e’ rotates
2¢ at subsequent boundaries. When the waves arrive
at the surface they have relative orientations as given
in Fig. 3. (Multiple reflexions are neglected.) The phase
difference of two successive waves is 2nb, b being the
thickness of one layer. It will be clear from Fig. 3 that
there will be a maximum of intensity when E; and
E,, E, and Ej, etc., are in phase. This requires that

2—” 2nb=A. The same formula is obtained when g—ﬂ is

2¢
not an integer. The thickness, p, of a pile in which there
is a complete revolution of the principal directions

2 .
equals —ﬂb, so that the condition for a maximum be-

¢
comes =2, (5)

It should be noted that 2A would not fit, since in this
case K, and E,, etc. would compensate each other.
The next possibility is 7A, 137, etc., but this leads to
unreasonably large values of p.
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According to (5) the wave-length A of maximum
reflexion depends on p only, whereas the value of b is
inessential. The only value of b which would give special
resultsis b=}p and ¢ = 7. In this case all partial waves
E' have the same direction, and the resulting reflected
wave will be linearly polarized. When ¢ =} it can be
proved that the resulting wave is circularly polarized.
This can be understood qualitatively from Fig. 3. First
E, reaches its maximum; then E,, etc. So we see the
maximum rotate in a clockwise direction, i.e. the sense
in which the subsequent principal directions rotate. The
length of the resulting vector is 3kE’, k being the
number of layers in the pile, and E’ the amplitude of
one partial wave. B'=}a Esin¢. For small values of ¢
the amplitude of the circular wave reduces to

o E kp=}andA-1nE,

where d=kb.
E{
Ef 4
o £
Ef=E7

Fig. 8. The partial waves Ej, etc., from successive
planes of reflexion, for ¢=30°.

Here again the result does not depend on the thickness
of one layer. For this reason we shall proceed in the
following sections with a model in which the electrical
axes turn continuously, though part of the results to
be obtained there could perhaps also be derived from
the present model.

Only one implication of the present theory has still
to be mentioned. When the incident beam is circularly
polarized with a clockwise rotating vector it is easily
seen that the two reflected circular waves originating
from its linear components just cancel out, whereas an
incident beam with anticlockwise rotating vector gives
waves reflected in phase with a clockwise rotating
vector. This agrees with the properties summarized in
§1. When the length of the rotating vector is E, the
amplitude of the reflected wave is twice the value found

above, i.e. B =andA-1nE. (6)

5. Rigorous treatment for continuously changing
electrical axes
It was shown that the thickness b of one (hypothetical)
layer was inessential for the phenomena. Moreover, the
existence of a well-defined thickness would require a
special explanation. It seems therefore more reasonable
toassume continuousrotation of the principal directions.
‘When the substance reflects visible light, p equals about
0-5 1 and the rotation of the principal directions is about
1° for a monomolecular layer. This must be related
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with the form and the arrangement of the molecules in
some way, but it is beyond the scope of the present
paper to explain this. I have found that a similar
continuous rotation was already supposed to exist in
azoxyphenetol by Mauguin (1911). This substance
showed remarkable optical properties when the cover-
glass was rotated through an angle ¢. These phenomena
could be explained by supposing that the cover-glass
dragged the principal directions of the adhering layer
of the crystal with it, so that the crystal acquired a
screw structure in which the electrical axes change their
orientation continuously from the lower glass to the
cover-glass. Our hypothesis for the cholesterol deri-
vates differs from the model of Mauguin in two ways:
(1) spontaneous rotation, (2) a large number of re-
volutions with a pitch pa/A, whereas the rotation in
Mauguin’s experiments was smaller than 90° and
P>A

6. The normal waves in the screw structure

The well-known relations between D and ¥ for a wave
in the direction of the z axis are given by

122D, 0E, 10*D, ¢°E,

¢ a2 a2’ e O O’
The relations between D and E have a simple form in
the &~ system (see Fig. 2), where the axes £ and # are
perpendicular to the z axis and in the direction of the
electrical axes of the crystal. We suppose the angle ¢
between £ and z to depend on z, ¢ =27rz/p (see also §2).
Here p stands for the pitch of the ‘screw’. In this
system we have D;=e¢, B¢, D,=¢,E,. Suppose €> 6.

In order to use the relatlons (7) it is necessary to

transform them into the £-7 system. According to
Fig. 2 one can write

D,=0. (7)

E,=Ecos 2nz[p— E, sin 2mz/|p, | ()
E,=E;sin2nz/p+ E, cos 2mz[p.
Similar relations hold for D. With these values (7) takes
the form
& PE PEg _ OBy 4m OE, 4n*
o o2 _;—é_z—_F &
€ 0°E, O*E, 4moE; 4n®
2 8t2 B D oz p?
As a solution we try

Eg—A} 9 i mz
E.—ip| | ¥\~ X

This is an elliptically polarized wave in the £~y system.
Tt would be misleading to call m the refractive index,
though it plays this role in (10). It has very uncommon
properties, since (10) describes the wave motion in a
‘secrewed’ system. By substituting (10) in (9) one

9)

6z2 K

(10)

obtains
A8 4™ op™ A
o X /\p an
G _gM o4 ™ E
Bﬁ_B/V +2A/\ +p

Eliminating B/4,

m* —m2(e, + €5+ 2A%/p?) + (6, — A/p?) (6, — A*/p?) =0.

(12)
The treatment of these equations is simplified by intro-
ducing ‘reduced’ quantities: A'=2A/(pye); m'=m/fe.
According to (5) reflexion occurs for A'=1. ¢ stands
for the mean dielectric constant (e=1(e; +¢€y)).
(€a—€;)/(2¢)=a is a measure of the double refraction.
a=0-05 fits rather well the data reported by Friedel
(1922).

Equation (12) in its ‘reduced’ form is

mt—2m’2 (1 4+ A2) 4 (1 —a— A'2) (1 +a— A'%) =0. (12a)
. B l—a—m'2—A"?

Apart from the notation, these formulae were also given
by Mauguin (1911).

7. Discussion of the equations

Equation (12) gives two values for m'2. The larger one,
my?, proves to be positive for all values of A'. The other
root, m,?, is negative if 1—a<A’2<1+4a. (For these
values of 1’2 the product of the roots of (12a) is negative.)
This implies that m,’ is imaginary in the region where
the reflexion occurs according to equation (5). This
reflexion will be dealt with in §§ 8 and 9. For m’ one
of the roots of m'2 can be chosen. One is inclined to take
the positive root since (10) has to represent a wave in
the positive direction of the z axis. It will be shown,
however, in §§ 7 and 8 (footnotes) that m; has to be
negative when A'2>1+a. A positive value would give
a wave in the wrong direction.

For part of the discussion we want explicit ex-
pressions for m; and m,; these are obtained by ex-
panding in series:

lex— L
M=t ”

, o (14)
m2=1+A+m+

For A'2<a and A’ &1 other expansions should be used.
Each value of m corresponds to a normal wave with an
ellipticity B/A which is obtained from (13). By/A, is
always real and negative, corresponding to an electrical
vector which rotates in clockwise direction. B,/4, is
real and negative except for the region of total reflexion
(see Fig. 1). The values of B/4 and m' are given
graphically in Fig. 4.

The first wave in the region |1—A"2|<a requires
special discussion. Substituting in (9) an imaginary
value of m’, m’ = —iu, where g stands for a real number,

one obtains g _ 4 o—emueid cos 2mT,
E,=1B, e~*12 cos 2mt/T.

It follows from (13) that ¢B/4 is real in this region
so that the resulting wave is linearly polarized. Its

(15)
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amplitude decreases by the exponential factor and its
phase does not depend on z.

Not too much stress should be laid upon the waves in
the crystal since these waves are unobservable, in con-
trast to the waves that leave the crystal.

a0 —
2

e | I Y S T |
0 02 04 06 08 10 12 14 16 18

Fig. 4. Curves I and II, the ellipticities B,/4, and —A4,/B, of
the two normal waves. mj and mj, the ‘refractive indices’
(see text). Vertical lines at A’=144a. Arbitrarily « was
chosen as 0-05.

8. The rotatory power

(A) Mauguin (1911) confined himself to the case
p>A. The two normal waves are nearly linearly
polarized since B;/4;~xA,/B,~0. The first wave is
polarized along the £ axis, the second wave along the 3
axis. Since the £~ system rotates relative to a fixed
system of co-ordinates, the planes of polarization also
rotate. The sense of rotation is the same as the sense of
rotation of the cover-glass (see §5). This rotation is
superimposed on the normal phenomena of double re-
fraction, the refractive indices m, and m, (10) having
the ‘normal’ values \e; and Je,.

(B) Larger values of A’. Here the normal waves are
nearly circularly polarized with opposite sign of rotation
and a different velocity (see §6). This brings about a
rotation of the plane of polarization of a linearly
polarized beam which can be considered as resulting
from these normal waves. The direction of the resulting
vector is the bisector of the angle between simultaneous
positions of the two rotating vectors. Calling the angles
of these three vectors with the x axis ¢, ¥, and ¢,
respectively, the rotatory power is

ay _1 (o , oy
dz 2\ 0z 0oz ),
Now (0yr/0z), consists of two parts: its rotation in the

£—y system and the rotation of this system itself. One
finds

oy 2m v,
g—;(l—mz//\) and

oY, 2m iy
% p (L+my /).
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Inserting m’ from (14) this becomes

oy, 2m 1 o?
o ‘pa'( 8A’(1-A’)+'”)’

Oy 2m o

22 _p/\'( +8/\’(1+/\’)+'")'
Unless A’ %1, 9y, /0z approximately equals 27 ,/¢/A. This
has a simple physical meaning. When we consider the
simultaneous positions of the rotating vectors for
different values of z, they are arranged in a screwlike
way. A vector which rotates (in the course of time) in
a clockwise direction will make a left-turning screw.
So the first wave should make a right-turning screw, its
pitch being one wave-length (A/\fe). Indeed, (16) gives
the correct sign and magnitude.* The rotatory power
comes out as oy o a?

dz~  p 8XH1-A"%)"
The factor (1 —A'%) causes the remarkable phenomena
described in § 1. For A’2< (1 —a) the electrical vector
rotates in anticlockwise direction since diyr/dz is
negative. When the wave moves towards the observer
he sees a clockwise rotation; indeed, in Fig. 1 it is seen
that the rotatory power should be right-handed for
A’< 1. For A’>1 the sign changes because of the factor
(1—2’%) in (17). The magnitude of dif/dz is also of the
right order. At the edges of the region R we know that
1—-A2=a. According to (17), the rotatory power be-
dy 27ma

comes — = 8
gives a reasonable band of reflexion (see Fig. 1), the
rotatory power becomes 16 revolutions per mm.

Because of the factor A’2 the decrease of the rotatory
power is most pronounced at the long-wave-length side
of the reflexion band; this agrees with the experimental
results.

Up to now we have neglected the fact that the waves
arenot exactly circularly polarized. This is unimportant,
however, since it will be shown in §§8 and 9 that the wave
which leaves the crystal is nearly circularly polarized.
Furthermore, the amplitude of the first wave is smaller
than theamplitude of the second wave, at least close to B.
This makes the resulting wave elliptically polarized.
The rotatory power is now a rotatory power of the long
axis. At the edges of the region R the first wave has an
intensity zero; this explains why the rotatory power dis-
appears. Even when the intensity of the first wave does
not vanish completely (when the layer of crystal is thin)
the rotatory power will disappear since the emerging
wave results then from a large number of internal re-
flexions (see § 11).

If the reflexion is neglected a pile of doubly refracting
sheets still shows rotatory power

ay 2ma?
dz~  8pA?
* It should be remarked here that di,/0z would come out

with the wrong sign if for m} a positive value had been chosen
in the region A’> 1.

(16)

(17)

. Inserting p=0-4 4 and & =0-05, which
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This is, in our notation, a formula given by Pockels
(1906, p. 291) and simplified by supposing that the
angle ¢ between subsequent layers is small. It differs
from our formula (17) just by the important factor
(1—A%) in the denominator.

Finally, it can be remarked that the formula does not
apply to substances like quartz which have a screw
axis on an atomic scale. Inserting reasonable values
for @ and p, one arrives at very small rotatory powers.
Moreover dyr/dz would be proportional to A-%, whereas
it should be proportional to A-2. These rotatory powers
have already been explained in a quite different way.

9. Calculation of the reflexion at the boundaries
of a liquid crystal
On both sides of the boundaries £ and H must be the
same; this gives again the relations between incident
and reflected waves. H can be expressed in terms of
E by combining (10), (8) and (2).
One finds
Hy= —iA[A/p+mf]
H,= A[m+(A/p)f]
These formulae become more comprehensible when the
factor [m+ (A/p)f]=(€) (m’ +-X’f) is considered in more
detail. It can be shown that (m’+A’f) is nearly unity,
except for the first wave in the region A’ & 1. This means
that m+(A/p)f is nearly the normal refractive index.
Furthermore, Al+m'f=ﬁ+—m" (This can be proved
from (12) and (13).) Denoting A’f+m’ by ¢, (18) re-
duces to

} exp [2mi(t/T —mz/A)]. (18)

H;= —%EE,, and H,=q\eE;. (18a)
The only difference from the corresponding formulae for
a normal substance (see (19)) is the factor ¢ which is
exactly unity for normal substances. These formulae
demonstrate once more that m does not play the role
of the refractive index.*

A. The boundary glass—crystal

The components of the incident and the reflected
wave in the cover-glass are represented by

B, =e, } , Hy= mk,,

Z lexp[2mi(t/T —ngz/A)] Y
E, =ie, Pl / o/ H,=—mnl,, (19)
By=e, }ex (23T +ngz/A)] Hy=—nk,
Ey=1e, P o H,= n,kE,.

* Formula (18a) enables the calculation of the Poynting
vector P=4c—" [E, H] which gives the direction and the magni-

tude of the propagation of energy. P is zero for the first wave
in the region of total reflexion, since the imaginary value of ¢
causes & phase shift of 90° between E and H. The sign of P
depends on the sign of m, chosen in § 7. It was anticipated
there that m] had to be chosen negative for A’2>(1+a). A
positive value would have given a negative P; this means that
the wave would propagate in the direction of the negative
z axis.,

It has been explained already in § 3 that the amphi-
tudes e may be complex in order to account for phase
shifts. Since the waves turn out to be elliptically
polarized we have denoted the y amplitudes by e, so
that e, will in general be real.

Inorder to avoid the normal reflexion at the boundary
we will suppose 7, of the glass to be equal to 4/ of the
crystal. The boundary conditions for £ and H can now
be written as

exte, =4, e, +e,=f4,
’ ’ 20
e, —e,=¢qA, e,,—e,,=‘iA. (20)

q

It is supposed here that the incident wave is chosen so
that only one normal wave in the crystal results.
The equations are solved by

2e,= A(l+g) Co_ Gy,
2ey= Af(l+9)/q and €y e; f’ (21)
2¢,= A(l—gq) ez €, 1—

2e,= —Af(1-q)/q e e 1+g

B. The boundary crystal-glass

This can be treated in a similar way. It should be
noted that m, f and g for the reflected wave change sign
(see (13)). The first important result is that the first
normal wave in the crystal gives rise to a reflected
wave which also consists of the first normal wave only.
The same holds for the second wave. Therefore we can
confine ourselves to one incident normal wave. The
results are

r__ l—q " __ 2q
A A, em—1+q

l+¢q

Here 4’ stands for the amplitude of the reflected wave;
e and e, represent the amplitudes of the outgoing
wave in the glass.

y . 2
4, d=fr 4. @)

10. Reflexion at the boundaries (discussion)
A. The polarization of the waves
According to (21) and (22) :—’°=Z—’c
v
A’ > a (i.e. the region we are interested in) thisis approxi-
mately equal to 1 + 3a/A for the first wave, or — 1+ 4at/A
for the second wave ((12) and (13)). This means that the
waves in the glass are nearly circularly polarized. The
waves in the glass which correspond to the first wave
in the crystal and which move in the direction of the
incident light have an anticlockwise rotating electrical
vector. The deviations from circularity are in opposite
directions for both waves, but they are very small
whereas these deviations for the waves in the crystal
may be very large (see Fig. 4). It is easily found from
the formulae that the sense of the rotation is reversed
by the reflexion.

=/\'+ﬁfz~. When
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B. The phase relations

Except for the first wave in the region |1-A"2|<«,
the ‘refractive index’ ¢ is real. According to (21) and
(22) this means that the ratios e/e,, etc., are real, so
that there is no phase shift. In the region of total
reflexion, however, the first wave has an imaginary ¢
and ey/e, =(1—gq)/(1+¢) is complex. If arctan|g|=4¢,
there is a phase shift of 2¢ between the incident and the
reflected wave. Of course this phase shift is of no direct
importance in the measurements. It is only a serious
complication of the calculations when one does not
make use of complex amplitudes,

C. The intensity of the reflected wave

According to (21) and (22) the reflexion is governed
by the factor (1—gq)/(1+¢). It can be shown that
(1 —-gq) is approximately equal to 3x/m. This approxi-
mation does not hold for the first wave in the region
A’z 1, where m'=0; this region will be considered
separately. Since « is very small, and m'~1 or even
larger, the amplitude of the reflected wave is at most
3o times the amplitude of the incident wave. For very
large wave-lengths, A’, the reflexion goes to zero since
m’ =~ 1+ A’ (see (14)). This is reasonable since, for a long
wave-length, only the mean refractive index, n,, is of
interest. We have chosen n, equal to the refractive index
of the cover-glass so that the normal reflexion vanishes.
The intensity of the reflected wave is proportional to
the square of the amplitude. Since the latter is small
the former can be neglected completely.

D. The reflexion of the first wave in the region X' ~1

For |1-A2| <, q is imaginary. The absolute value
of eyle,=(1—q)/(1+¢) equals unity. This means that
the wave is completely reflected. For A’2< (1 —«) or
A'?> (1+4a), but not too far from A’ =1, the reflexion is
still appreciable (see Fig. 1).

Of course both reflexions at the upper and the lower
boundary of the crystal have to be taken into account,
as well as multiple reflexions of the wave in the crystal.
This will be done in the next section.

11. Reflexion at thin layers

According to § 10 we can confine ourselves to the first
wave with an anticlockwise rotating electrical vector
and the region A’~1. We have found already that all
reflected waves have an electrical vector which rotates
clockwise. Generally, however, there is a phase differ-
ence. Beyond the region of total reflexion, this is a con-
sequence of the difference in optical path, d, traversed.
In the region of total reflexion the phase difference
results from the reflexion. Moreover, there is a differ-
ence in amplitude. In the region of total reflexion this
results from a decrease of amplitude iz the layer,
beyond this region it is caused by reflexion at the
boundaries. When the amplitude of the incident circu-
larly polarized wave e, equals unity, the amplitude of
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the first reflected wave e, equals (1 —q)/(1+q), whereas
A,=2/(144) (equation (22)). At the second boundary
this amplitude is 4, exp [ —2mim;dA-1,Je]=A,s. Here s
represents the absorption when m; is imaginary, and
the phase shift when m; is real. Each of the successive
waves which leave the crystal is obtained from the
foregoing one by multiplication by {s(1—gq)/(1+¢)}%.
Summing the geometric series the total amplitude of the
reflected wave is:
(1—g% (1—s)

(I+gP—s(1—g)*
R is complex. Since we are only interested in the ampli-
tude, we consider its absolute value.

(23)

(1) Beyond the region of total reflexion

Here g is real and s? is complex. Therefore s2 can be
represented by s2=cos 2§+ ¢sin 28, where § stands for
the phase shift in the layer d, or & =2rm;dA-! \Je. The
intensity R2 of the reflected wave is then

a_ (1 —¢?%)2%sin?é -

(1 —g?)?sin?d + 4¢>
The intensity R?2 is thus a periodic function of the thick-
ness d. When 8=0° 180°, etc., the reflected wave
vanishes; R?2 reaches a maximum for § =90°, 270°, etc.

(24)
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Fig. 5. The reflexion as a function of the reduced thickness
d’=2ndA-* afe. The wave-length is A’=1—ma, m being
given in the figure. For > 0-5 the curves are periodic; the
maxima and minimsa have been marked by vertical lines.

The relation (24) is represented in Fig. 5. It is seen that
the fluctuations become slower when A’ approaches
unity. This also follows from the simple reasoning of
§ 4. When A’ is close to the right value, the deviation
malkes itself perceptible only when the wave is reflected
on a large number of layers.

(2) Inside the region of total reflexion

Here s is real and g becomes imaginary (g% negative).
One finds now
P (=s20—g?
(T—s%)2 (1— )2 — 16s%g?
This function is also represented in Fig. 5. The first
parts of all curves are seen to be nearly identical and
can be derived from the formulae that the amplitude B
for thin layers equals madA-! . e. This formula was
derived in § 4 in an elementary way (equation (6)).

15

(24)
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12. Numerical calculations

Strictly speaking numerical calculations can be per-
formed only if a special value of « is chosen. The para-
meter p is eliminated by making use of the reduced
wave-length A'=A/(p4e). For small values of a, how-
ever, one can find very good approximations, in which
e« is also eliminated. For these small values of « the
reflexion is symmetrical at both sides of A’ =1; therefore
we confine ourselves to A’< 1. Introducing A, so that
A'2=1—qa(1+A), one finds by expanding in series:

1o [*)2 A A
mita(5) @a+an, N e

In the region of total reflexion A varies from —1 to 0,
so that m; and f, are imaginary. In the expression for s
(see § 10) the exponent 2mim,dA-! Je can be ‘normal.
ized’ by introducing d'=2nadA \e. Here d’' will be
called the reduced thickness. The exponent becomes
now d’'.J(2A+A%). So there is only one parameter A
left.

13. The planes of Grandjean

The phenomena predicted in the foregoing sections do
not include the periodic bright and dark lines described
in § 1 (5). It seems to us, therefore, that these lines are
caused by periodical disturbances of the screwlike
structure. It is probable that the orientation of the
molecules in the two boundaries is prescribed by the
structure of the surfaces—especially when the wedge
consists of mica, which is often used. When the pitch, f,
of the screw exactly fits the width, w, of the wedge the
screwlike structure can develop. This requires that w
equals }kp, or perhaps kp (k integer). Of course there
are other parts of the wedge where the structure does
not fit in w, so that the normal arrangement is disturbed
and dark lines appear between crossed nicols. This
hypothesis also explains why the planes of Grandjean
are less pronounced when a wedge of glass is used since,
generally, glass will not show these preferred directions.
It is important to know, however, that the study of
liquid crystals has often revealed the existence of pre-
ferred orientations even on glass (see Mauguin, 1911).

If this explanation is correct the planes of Grandjean
should not be visible in light containing only the
second normal wave, which is unaffected even when the
screwlike structure is present. This has in fact been
found. The experiments should, however, be repeated
in monochromatic light.

14. Comparison with the experiments

In the course of the discussions it has been shown
already that qualitatively the predictions of the theory
agree with the experimental results summarized in § 1.
No complete data are available to test the theory
quantitatively. The measurements would not be diffi-
cult to make, however, since the theory contains only
three constants, p, « and the refractive index n, which
can be determined in various ways. The quantity p is
determined from the wave-length A, of the central part
of the reflexion band (pn=A,). The wave-lengths can be
reduced to A’ by dividing them by A, (A'=A/Ag). The
quantity « can be determined from the width of the
band (see Figs. 1 and 5). Then the rotatory power and
the intensity of the reflected beam can be calculated as
a function of A; they depend only on « (see Fig. 5). The
interesting fluctuations, shown in Fig. 5, have not yet
been observed.

Finally, « appears in the ellipticity of the reflected
beam. When « is not too small the ellipticity can be
determined, as well as the directions of the axes. The
latter are interesting with respect to the occurrence of
fixed orientations on the cover-glass mentioned in § 12.

We have confined ourselves to perpendicular in-
cidence. Oblique incidence may give rise to new pheno-
mena which perhaps have been observed already
though they still lack an explanation.

I express my thanks to Hn. de Vries (de Vries &
Backer, 1950), who made some new cholesterol de-
rivates which drew our attention to this class of liquid
crystals, and especially to Dr W. G. Perdok, who made
some orientating observations which afterwards proved
to agree with the descriptions given by Friedel (1922).
At present Dr Perdok is testing the theory and its basic
assumptions quantitatively.

Finally, I thank Prof. ¥. Zernike and Prof. H.
Brinkman for some improvements in the text of the
manuscript.
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